arXiv:1802.06993v3 [cs.CR] 4 Nov 2020

A Survey on the Security of Blockchain Systems

Xiaoqi Li?, Peng Jiang?®, Ting Chen®, Xiapu Luo®*, Qiaoyan Wen®

®Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR
bCenter for Cybersecurity, University of Electronic Science and Technology of China, China
¢State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, China

Abstract

Since its inception, the blockchain technology has shown promising application prospects.
From the initial cryptocurrency to the current smart contract, blockchain has been applied
to many fields. Although there are some studies on the security and privacy issues of
blockchain, there lacks a systematic examination on the security of blockchain systems. In
this paper, we conduct a systematic study on the security threats to blockchain and survey
the corresponding real attacks by examining popular blockchain systems. We also review
the security enhancement solutions for blockchain, which could be used in the development
of various blockchain systems, and suggest some future directions to stir research efforts into
this area.

Keywords: blockchain, security, cryptocurrency, smart contract

1. Introduction

Since the debut of Bitcoin in 2009, its underlying technique, blockchain, has shown
promising application prospects and attracted lots of attentions from academia and indus-
try. Being the first cryptocurrency, Bitcoin was rated as the top performing currency in
2015 [1] and the best performing commodity in 2016 [2], and has more than 300K con-
firmed transactions [3] daily in May, 2017. At the same time, the blockchain technique
has been applied to many fields, including medicine [4, 5, 6], economics [7, 8, 9], Inter-
net of things [10, 11, 12], software engineering [13, 14, 15] and so on. The introduction of
Turing-complete programming languages to enable users to develop smart contracts running
on the blockchain marks the start of blockchain 2.0 era. With the decentralized consensus
mechanism of blockchain, smart contracts allow mutually distrusted users to complete data
exchange or transaction without the need of any third-party trusted authority. Ethereum is
now (May of 2017) the most widely used blockchain supporting smart contracts, where there
are already 317,506 smart contracts and more than 75,000 transactions happened daily [16].

*Corresponding author
Email addresses: csxqli@gmail.com (Xiaoqi Li), csxluo@comp.polyu.edu.hk (Xiapu Luo)

Preprint submitted to Elsevier November 5, 2020

Since blockchain is one of the core technology in FinTech (Financial Technology) industry,
users are very concerned about its security. Some security vulnerabilities and attacks have
been recently reported. Loi et al. discover that 8,833 out of 19,366 existing Ethereum
contracts are vulnerable [17]. Note that smart contracts with security vulnerabilities may
lead to financial losses. For instance, in June 2016, the criminals attacked the smart contract
DAO [18] by exploiting a recursive calling vulnerability, and stole around 60 million dollars.
As another example, in March 2014, the criminals exploited transaction mutability in Bitcoin
to attack MtGox, the largest Bitcoin trading platform. It caused the collapse of MtGox, with
a value of 450 million dollars Bitcoin stolen [19].

Although there are some recent studies on the security of blockchain, none of them
performs a systematic examination on the risks to blockchain systems, the corresponding
real attacks, and the security enhancements. The closest research work to ours is [20]
that only focuses on Ethereum smart contracts, rather than popular blockchain systems.
From security programming perspective, their work analyzes the security vulnerabilities of
Ethereum smart contracts, and provides a taxonomy of common programming pitfalls that
may lead to vulnerabilities [20]. Although a series of related attacks on smart contracts are
listed in [20], there lacks a discussion on security enhancement. This paper focuses on the
security of blockchain from more comprehensive perspectives. The main contributions of
this paper are as follows:

(1). To the best of our knowledge, we conduct the first systematic examination on
security risks to popular blockchain systems.

(2). We survey the real attacks on popular blockchain systems from 2009 to the present
(May of 2017) and analyze the vulnerabilities exploited in these cases.

(3). We summarize practical academic achievements for enhancing the security of blockchain,
and suggest a few future directions in this area.

The remainder of this paper is organized as follows. Section 2 introduces the main
technologies used in blockchain systems. Section 3 systematically examines the security risks
to blockchain, and Section 4 surveys real attacks on blockchain systems. After summarizing
the security enhancements to blockchain in Section 5, we suggest a few future directions in
Section 6. Finally, Section 7 concludes the paper.

2. Overview of Blockchain Technologies

This section introduces the main technologies employed in blockchain. We first present
the fundamental trust mechanism (i.e., the consensus mechanism) used in blockchain, and
then explain the synchronization process between nodes. After that, we introduce the two
development stages of blockchain.

2.1. Consensus Mechanism

Being a decentralized system, blockchain systems do not need a third-party trusted au-
thority. Instead, to guarantee the reliability and consistency of the data and transactions,
blockchain adopts the decentralized consensus mechanism. In the existing blockchain sys-
tems, there are four major consensus mechanisms [21]: PoW (Proof of Work), PoS (Proof

2

of Stake), PBFT (Practical Byzantine Fault Tolerance), and DPoS (Delegated Proof of
Stake). Other consensus mechanisms, such as PoB (Proof of Bandwidth) [22], PoET (Proof
of Elapsed Time) [23], PoA(Proof of Authority) [24] and so on, are also used in some
blockchain systems. The two most popular blockchain systems (i.e., Bitcoin and Ethereum)
use the PoW mechanism. Ethereum also incorporates the PoA mechanism (i.e., Kovan pub-
lic test chain [25]), and some other cryptocurrencies also use the PoS mechanism, such as
PeerCoin, ShadowCash and so on.

Compute puzzle

| |

| |

| |

! ﬂ ! Node B .
| ! N - - - - - /
: Solve puzzle : Broadcast A ™
! ﬂ I ! Verify puzzle i
i i I |
: : : Node C i
| Create block i N /
| | i N
! Node A I i\ Other nodes /'

Figure 1: PoW consensus mechanism

PoW mechanism uses the solution of puzzles to prove the credibility of the data. The
puzzle is usually a computationally hard but easily verifiable problem. When a node creates a
block, it must resolve a PoW puzzle. After the PoW puzzle is resolved, it will be broadcasted
to other nodes, so as to achieve the purpose of consensus, as shown in Fig.1.

In different blockchain systems, the block structure may vary in detail. Typically in
Bitcoin, each block contains PrevHash, nonce, and Tx [26]. In particular, PrevHash indicates
the hash value of the last generated block, and Txs denote the transactions included in this
block. The value of nonce is obtained by solving the PoW puzzle. A correct nonce should
satisfy that the hash value shown in Equation 1 is less than a target value, which could be
adjusted to tune the difficulty of PoW puzzle.

SHA256(PrevHash || Tz1|| Tx2]|...|| nonce) < Target (1)

PoS mechanism uses the proof of ownership of cryptocurrency to prove the credibility
of the data. In PoS-based blockchain, during the process of creating block or transaction,
users are required to pay a certain amount of cryptocurrency. If the block or transaction
created can eventually be validated, the cryptocurrency will be returned to the original
node as a bonus. Otherwise, it will be fined. In the PoW mechanism, it needs a lot of
calculation, resulting in a waste of computing power. On the contrary, PoS mechanism can
greatly reduce the amount of computation, thereby increasing the throughput of the entire
blockchain system.

2.2. Block Propagation and Synchronization
In the blockchain, each full node stores the information of all blocks. Being the foundation
to building consensus and trust for blockchain, the block propagation mechanisms can be

3

/ N GetBlockHeaders
Request latest block header

Block header

BlockHeaders

Block body

Request MaxHeaderFetch GetBlockHeaders

block header

BlockHeaders

Block header

Block body
Search common ancestor

GetBlockHeaders
GetBlockBodies
BlockHeaders
BlockBodies

Other blocks

Request blocks from
common ancestor

Figure 2: Block synchronization process between nodes

divided into the following categories [27, 28, 29]:

(1). Advertisement-based propagation. This propagation mechanism is originated from
Bitcoin. When node A receives the information of a block, A will send an inv message (a
message type in Bitcoin) to its connected peers. When node B receives the inv message
from A, it will do as follows. If node B already has the information of this block, it will do
nothing. If node B does not have the information, it will reply to node A. When node A
receives the reply message from node B, node A will send the complete information of this
block to node B.

(2). Sendheaders propagation. This propagation mechanism is an improvement to the
advertisement-based propagation mechanism. In the sendheaders propagation mechanism,
node B will send a sendheaders message (a message type in Bitcoin) to node A. When node
A receives the information of a block, it will send the block header information directly to
node B. Compared with the advertisement-based propagation mechanism, node A does not
need to send inv messages, and hence it speeds up the block propagation.

(3). Unsolicited push propagation. In the unsolicited push mechanism, after one block
is mined, the miner will directly broadcast the block to other nodes. In this propagation
mechanism, there is no inv message and sendheaders message. Compared with the previous
two propagation mechanisms, unsolicited push mechanism can further improve the speed of
block propagation.

(4). Relay network propagation. This propagation mechanism is an improvement to the
unsolicited push mechanism. In this mechanism, all the miners share a transaction pool.
Each transaction is replaced by a global ID, which will greatly reduce the broadcasted block
size, thereby further reducing the network load and improving the propagation speed.

(5). Push/Advertisement hybrid propagation. This hybrid propagation mechanism is
used in Ethereum. We assume that node A has n connected peers. In this mechanism, node
A will push the block to y/n peers directly. For the other n — y/n connected peers, node A
will advertise the block hash to them.

Different blockchain systems may use diverse block synchronization processes. In Ethereum,
node A can request block synchronization from node B with more total difficulty. The specific

4

process is as follows (shown in Fig.2) [27, 28, 29]:

(1). Node A requests the header of the latest block from node B. This action is imple-
mented by sending a GetBlockHeaders message. Node B will reply to node A a BlockHeaders
message that contains the block header requested by A.

(2). Node A requests MaxHeaderFetch blocks to find common ancestor from node B. The
default value of MaxHeaderFetch is 256, but the number of block headers sent by node B to
A can be less than this value.

(3). If A has not found common ancestor after the above two steps, node A will continue
to send GetBlockHeaders message, requesting one block header each time. Moreover, A
repeats in binary search to find the common ancestor in its local blockchain.

(4). After node A discovers a common ancestor, A will request block synchronization
from the common ancestor. In this process, A requests MaxHeaderFetch blocks per request,
but the actual number of nodes sent from B to A can be less than this value.

Figure 3: Query Bitcoin trans- Figure 4: Pay with Bitcoin = Figure 5: Collect payments with
action history Bitcoin

2.8. Technology Development

From the birth of the first blockchain system Bitcoin, the blockchain technology has
experienced two stages of development: blockchain 1.0 and blockchain 2.0.

In the blockchain 1.0 stage, the blockchain technology is mainly used for cryptocurrency.
In addition to Bitcoin, there are many other types of cryptocurrencies, such as Litecoin,
Dogecoin and so on. There are currently over 700 types of cryptocurrencies, and the total
market capitalizations of them are over 26 billion US$ [30]. The technology stack of cryp-
tocurrency could be divided into two layers: the underlying decentralized ledger layer and
protocol layer [31]. Cryptocurrency client, such as Bitcoin Wallet [32], runs in the proto-
col layer to conduct transactions, as shown in Fig.3 to Fig.5. Compared with traditional
currency, cryptocurrency has the following characteristics and advantages [33]:

(1). Irreversible and traceable. Transfer and payment operations are irreversible using
cryptocurrency. Once the behavior is completed, it is impossible to withdraw. In addition,
all user behaviors are traceable, and these behaviors are permanently saved in the blockchain.

5

(2). Decentralized and anonymous. There is no third-party organization involved in
the entire structure of cryptocurrency, nor does it has central management like banks. In
addition, all user behaviors are anonymous. Hence, according to the transaction information,
we cannot obtain the user’s real identity.

(3). Secure and permissionless. The security of the cryptocurrency is ensured by the
public key cryptography and the blockchain consensus mechanism, which are hard to be
broken by the criminal. Moreover, there is no need to apply for any authority or permission
to use cryptocurrency. Users can simply use the cryptocurrency through the relevant clients.

(4). Fast and global. Transactions can be completed in only several minutes using
cryptocurrency. Since cryptocurrencies are mostly based on public chains, anyone in the
world can use them. Therefore, the user’s geographical location has little impact on the
transaction speed.

1 . | .
: i ! Parity I

N |
! : i ' Deploy by transaction
! Source code: *.sol | i | ———
: , i Geth ,

|

i i | i

| |
| solidity compiler: solc ::} Cpp- , _Contract address
! ! | [ethereum ! Ethereum
! : i : blockchain
! i i i Interact by transaction
|| Contracts bytecode : | | Pythereum|
, and ABI i : i

| |
'\ j ' i

\ Ethereum node

Figure 6: The process of smart contract’s development, deployment, and interaction

Table 1: Statistics of blockchain systems supporting smart contracts (until May of 2017)

System Contract language | Total TXs | Market Capitalization /M US$
Ethereum EVM bytecode 23,102,544 8,468
RSK Solidity Unknown N/A
Counterparty EVM bytecode 12,170,386 15
Stellar Transaction chains Unknown 139
Monax EVM bytecode Unknown N/A
Lisk JavaScript Unknown 71

In blockchain 2.0 stage, smart contract is introduced so that developers can create various
applications through smart contracts. A smart contract can be considered as a lightweight
dAPP (decentralized application). Ethereum is a typical system of blockchain 2.0. Each
Ethereum node runs an EVM (Ethereum Virtual Machine) that executes smart contracts.
Besides Ethereum, several other blockchain systems also support smart contracts, whose
information is listed in Table 1 [34]. In Ethereum, developers can use a variety of program-
ming languages to develop smart contracts, such as Solidity (the recommended language),
Serpent, and LLL. Since these languages are Turing-complete, smart contracts can achieve
rich functions. Fig.6 shows the process of smart contracts’ development, deployment and
interaction. Each deployed smart contract corresponds to a unique address, through which

6

users can interact with the smart contract through transactions by different clients (e.g.,
Parity, Geth, etc.). Since smart contracts can call each other through messages, developers
can develop more feature-rich dAPPs based on available smart contracts. Compared with
the traditional application, a dAPP has the following characteristics and advantages [35]:

(1). Autonomy. dAPPs are developed on the basis of smart contracts, and smart con-
tracts are deployed and run on the blockchain. Hence, dAPPs can run autonomically without
the need of any third party’s assistance and participation.

(2). Stable. The bytecodes of smart contracts are stored in the state tree of blockchain.
Each full node saves the information of all blocks and stateDB, including the bytecodes
of smart contracts. Hence, the failure of some nodes will not affect its operation. This
mechanism ensures that dAPPs can run stably.

(3). Traceable. Since the invocation information of smart contracts is stored in the
blockchain as transactions, all the behaviors of dAPPs are recorded and traceable.

(4). Secure. The public key cryptography and the blockchain consensus mechanism can
ensure the security and correct operations of smart contracts, so as to maximize the security

of dAPPs.

3. Risks to Blockchain

Table 2: Taxonomy of blockchain’s risks

Number Risk Cause Range of Influence
3.1.1 51% vulnerability Consensus mechanism
3.1.2 Private key security Public-key encryption scheme
3.1.3 Criminal activity Cryptocurrency application Blockchainl.0, 2.0
3.1.4 Double spending Transaction verification mechanism
3.1.5 Transaction privacy leakage Transaction design flaw
3.2.1 Criminal smart contracts Smart contract application
3.2.2 Vulnerabilities in smart contract Program design flaw Blockchain2.0
3.2.3 Under-optimized smart contract Program writing flaw '
3.2.4 Under-priced operations EVM design flaw

We divide the common blockchain risks into nine categories, as shown in Table 2, and
detail the causes and possible consequence of each risk. The risks described in Section 3.1
exist in blockchain 1.0 and 2.0, and their causes are mostly related to the blockchain oper-
ation mechanism. By contrast, the risks introduced in Section 3.2 are unique to blockchain
2.0, and are usually resulted from the development, deployment, and execution of smart
contracts.

3.1. Common Risks to Blockchain 1.0 and 2.0

3.1.1. 51% Vulnerability

The blockchain relies on the distributed consensus mechanism to establish mutual trust.
However, the consensus mechanism itself has 51% vulnerability, which can be exploited by
attackers to control the entire blockchain. More precisely, in PoW-based blockchains, if a
single miner’s hashing power accounts for more than 50% of the total hashing power of
the entire blockchain, then the 51% attack may be launched. Hence, the mining power
concentrating in a few mining pools may result in the fears of an inadvertent situation,

7

such as a single pool controls more than half of all computing power. In Jan. 2014, after
the mining pool ghash.io reached 42% of the total Bitcoin computing power, a number
of miners voluntarily dropped out of the pool, and ghash.io issued a press statement to
reassure the Bitcoin community that it would avoid reaching the 51% threshold [36]. In
PoS-based blockchains, 51% attack may also occur if the number of coins owned by a single
miner is more than 50% of the total blockchain. By launching the 51% attack, an attacker
can arbitrarily manipulate and modify the blockchain information. Specifically, an attacker
can exploit this vulnerability to conduct the following attacks [37]:

(1). Reverse transactions and initiate double spending attack (the same coins are spent
multiple times).

(2). Exclude and modify the ordering of transactions.

(3). Hamper normal mining operations of other miners.

(4). Impede the confirmation operation of normal transactions.

3.1.2. Private Key Security

When using blockchain, the user’s private key is regarded as the identity and security
credential, which is generated and maintained by the user instead of third-party agencies.
For example, when creating a cold storage wallet in Bitcoin blockchain, the user must import
his/her private key. Hartwig et al. [38] discover a vulnerability in ECDSA (Elliptic Curve
Digital Signature Algorithm) scheme, through which an attacker can recover the user’s
private key because it does not generate enough randomness during the signature process.

Once the user’s private key is lost, it will not be able to be recovered. If the private
key is stolen by criminals, the user’s blockchain account will face the risk of being tampered
by others. Since the blockchain is not dependent on any centralized third-party trusted
institutions, if the user’s private key is stolen, it is difficult to track the criminal’s behaviors
and recover the modified blockchain information.

3.1.3. Criminal Activity

Table 3: Top 10 categories of items available in Silk Road

Number Category Items | Percentage
1 Weed 3338 13.7%
2 Drugs 2194 9.0%
3 Prescription 1784 7.3%
4 Benzos 1193 4.9%
5 Books 955 3.9%
6 Cannabis 877 3.6%
7 Hash 820 3.4%
3 Cocaine 630 2.6%
9 Pills 473 1.9%
10 Blotter (LSD) 440 1.8%

Bitcoin users can have multiple Bitcoin addresses, and the address has no relationship
with their real life identity. Therefore, Bitcoin has been used in illegal activities. Through
some third-party trading platforms that support Bitcoin, users can buy or sell any product.
Since this process is anonymous, it is hard to track user behaviors, let alone subject to legal
sanctions. Some frequent criminal activities with Bitcoin include:

8

(1). Ransomware. The criminals often use ransomware for money extortion, and employ
Bitcoin as trading currency. In July 2014, a ransomware named CTB-Locker [39] spread
around the world by disguising itself as mail attachments. If the user clicks the attachment,
the ransomware will run in the background of the system and encrypt about 114 types
of each file [40]. The victim has to pay the attacker a certain amount of Bitcoin within
96 hours. Otherwise, the encrypted files will not be restored. In May 2017, another ran-
somware WannaCry (also named as WannaCrypt) [41] infected about 230,000 victims across
150 countries in two days. It exploited a vulnerability in Windows system to spread, and
encrypted users’ files to ask for Bitcoin ransom.

(2). Underground market. Bitcoin is often used as the currency in the underground
market. For example, Silk Road is an anonymous, international online marketplace that
operates as a Tor hidden service and uses Bitcoin as its exchange currency [42]. The top 10
categories of items available in Silk Road are listed in Table 3 [42]. Most of the items sold
in Silk Road are drugs, or some other controlled items in the real world. Since international
transactions account for a significant proportion in Silk Road, Bitcoin makes the transaction
in the underground market more convenient, which will cause harm to the social security.

(3). Money laundering. Since Bitcoin has the features like anonymity and network virtual
payment and has been adopted by many countries, compared with other currencies, Bitcoin
carries the lowest risk of being used for money laundering [43]. Cody et al. propose Dark
Wallet [44], a Bitcoin application that can make Bitcoin transaction completely stealth and
private. Dark Wallet can encrypt transaction information and mix the user’s valid coins
with chaff coins, and hence it can make money laundering much easier.

3.1.4. Double Spending

! .
Transaction to vendor

——

Transaction to vendor

|

|

|

|

I Vendor
|

|

i Transaction to Transaction to

I colluding address Bitcoin colluding address
() | network |)

|

: Mining pool
|

Attacker ,

Figure 7: Double spending attack model against fast payment in Bitcoin

Although the consensus mechanism of blockchain can validate transactions, it is still
impossible to avoid double spending [45]. Double spending refers to that a consumer uses
the same cryptocurrency multiple times for transactions. For example, an attacker could
leverage race attack for double spending. This kind of attack is relatively easy to implement
in PoW-based blockchains, because the attacker can exploit the intermediate time between

9

two transactions’ initiation and confirmation to quickly launch an attack. Before the second
transaction is mined to be invalid, the attacker has already got the first transaction’s output,
resulting in double spending.

Ghassan et al. [46] conduct an analysis of double spending against fast payment in
Bitcoin, and propose an attack model, as shown in Fig.7. Assuming that an attacker knows
the vendor’s address before the attack, to perform double spending, the attacker will send
two transactions, TX, and T'X, and choose the same BTCs (cryptocurrency in Bitcoin) as
inputs for T'X, and T X,. T X,’s recipient address is set to the targeted vendor’s address,
and T X,’s recipient address is set to the colluding address controlled by the attacker. If the
following three conditions are met, double spending will be successful: (1) T'X, is added to
the wallet of the targeted vendor; (2) T'X, is mined as valid into the blockchain; (3) The
attacker gets T'X,’s output before the vendor detects misbehavior. If the attack is successful,
T X, will eventually be verified as an invalid transaction, and BTCs are really spent by T'X,,.
The attacker has received T'X,’s output, which is the vendor’s normal service. Since T'X,’s
recipient address is controlled by the attacker, these BT Cs are still owned by herself. In this
double spending model, the attacker enjoys the service without paying any BTC.

3.1.5. Transaction Privacy Leakage

Since the users’ behaviors in the blockchain are traceable, the blockchain systems take
measures to protect the transaction privacy of users. In the Bitcoin and Zcash, they use
one-time accounts to store the received cryptocurrency. Moreover, the user needs to as-
sign a private key to each transaction. In this way, the attacker cannot infer whether the
cryptocurrency in different transactions is received by the same user. In Monero, users
can include some chaff coins (called “mixins”) when they initiate a transaction so that the
attacker cannot infer the linkage of actual coins spent by the transaction.

Table 4: Linkability analysis of Monera transaction inputs with mixins

Not deducible | Deducible | In total

Using newest TXO 15.07% 4.60% 19.67%
Not using newest TXO 22.61% 57.72% 80.33%
In total 37.68% 62.32% 100%

Unfortunately, the privacy protection measures in blockchain are not very robust. An-
drews et al. [47] empirically evaluate two linkability weaknesses in Monero’s mixin sampling
strategy, and discover that 66.09% of all transactions do not contain any mixins. O-mixin
transaction will lead to the privacy leakage of its sender. Since users may use the outputs
of 0-mixin transaction as mixins, these mixins will be deducible. Moreover, they study the
sampling method of mixins and find that the selection of mixins is not really random. Newer
TXOs (transaction outputs) tend to be used more frequently. They further discover that
62.32% of transaction inputs with mixins are deducible, as shown in Table 4 [47]. By ex-
ploiting these weaknesses in Monero, they can infer the actual transaction inputs with 80%
accuracy.

10

PW R -
%v enclave THTTPS login

' by PW
|
|
| ———
ct, 6, a . SGX-enabled host !
PwdTheft il 4 Server

App

Figure 8: Execution procedure of PwdTheft using SGX-enabled platform

3.2. Specific Risks to Blockchain 2.0

3.2.1. Criminal Smart Contracts

Criminals can leverage smart contracts for a variety of malicious activities, which may
pose a threat to our daily life. CSCs (Criminal Smart Contracts) can facilitate the leakage
of confidential information, theft of cryptographic keys, and various real-world crimes (e.g.,
murder, arson, terrorism, etc.) [48]. Juels et al. propose an example of password theft
CSC PwdTheft, whose process is shown in Fig.8 [48]. PwdTheft can be exploited for a fair
exchange between contractor C and perpetrator P. C will pay a reward to P if and only if P
gives a valid password to C. The entire transaction process can be done without any third
party trusted agencies involved. Since the smart contract deployed in blockchain cannot
access network directly [49], in the actual work process of PwdTheft, it is combined with
trusted hardware technology, such as Intel SGX (Software Guard eXtension), to prove the
validity of the password through HTTPS (Hypertext Transfer Protocol Secure). SGX will
create a trusted execution environment named enclave, which can protect the application
from being attacked by others. Any privileged or unprivileged software cannot access the
runtime environment of enclave. Furthermore, SGX can produce quote, a digitally signed
attestation. Quote can get the hash value of the application run in enclave environment.
Meanwhile, quote can access the relevant data during runtime of the application. The whole
password exchange process is divided into three steps:

(1). PwdTheft provides (pkc, A), pkc is the public key of C, and A is the target account
for stealing.

(2). The application that runs in SGX, using the PW provided by P, logs on to the server
account, A by establishing an HTTPS connection.

(3). If the preceding steps are successful, the data ct, o and « will be transmitted to
PwdTheft. ct = ency, [PW] and 0 = Siga,,,[ct]. skqpyp is the signature private key of the
application. « is a quote that runs on P’s SGX-enabled host.

After PwdTheft receives ct, o and «a, C can decrypt them to verify the data, and then
decide whether a reward should be paid to P. In this process, in order to prevent P from
changing the password maliciously after the data transmission to PwdTheft, they can add a
timestamp in the data. In addition, PwdTheft can be easily extended for conducting other
malicious activities. For example, criminals can leverage CSCs to make 0-day vulnerability
transactions, which are critical cyber-weaponry [48].

11

Table 5: Taxonomy of vulnerabilities in smart contract

Number Vulnerability Cause Level
1 Call to the unknown The called function does not exist
2 Out-of-gas send Fallback of the callee is executed
3 Exception disorder Irregularity in foceptlon handhngs Contract source code
4 Type casts Type-check error in contract execution
5 Reentrancy vulnerability Function is re-entered before termination
6 Field disclosure Private value is published by the miner
7 Immutable bug Alter a contract after deployment
8 Ether lost Send Ether to an orphan address EVM bytecode
9 Stack overflow The number of values in stack exceeds 1024
10 Unpredictable state State of the contract is changed before invoking
11 Randomness bug Seed is biased by malicious miner Blockchain mechanism
12 Timestamp dependence Timestamp of block is changed by malicious miner

3.2.2. Vulnerabilities in Smart Contract

As programs running in the blockchain, smart contracts may have security vulnerabilities
caused by program defects. Nicola et al. [20] conduct a systematic investigation of 12 types
of vulnerabilities in smart contract, as shown in Table 5. Loi et al. [17] propose a symbolic
execution tool called OYENTE to find 4 kinds of potential security bugs. They discover that
8,833 out of 19,366 Ethereum smart contracts are vulnerable. The details of these 4 bugs
are as follows:

(1). Transaction-ordering dependence. Valid transactions can change the state of Ethereum

blockchain from o to o': ¢ - o’ . In every epoch, each miner proposes their own block to
update the blockchain. Since a block may contain multiple transactions, blockchain state o
may change multiple times within an epoch. When a new block contains two transactions 7;
and 773, which invoke the same smart contract, it may trigger this vulnerability. Because the
execution of the smart contract is associated with state o, the execution order of T; and T;
affects the ultimate state. The order of transactions’ execution depends entirely on miners.
In this case, TOD (Transaction-Ordering Dependent) contracts are vulnerable.

(2). Timestamp dependence. In the blockchain, every block has a timestamp. Some
smart contracts’ trigger conditions depend on timestamp, which is set by the miner according
to its local system time. If an attacker can modify it, timestamp-dependent contracts are
vulnerable.

(3). Mishandled exceptions. This category of vulnerability may occur when different
smart contracts are called from each other. When contract A calls contract B, if B runs
abnormally, B will stop running and return false. In some invocations, contract A must
explicitly check the return value to verify if the call has been executed properly. If A does
not correctly check the exception information, it may be vulnerable.

(4). Reentrancy vulnerability. During the invocation of the smart contract, the actual
state of the contract account is changed after the call is completed. An attacker can use the
intermediate state to conduct repeated calls to the smart contract. If the invoked contract
involves Ether transaction, it may result in illegal Ether stealing.

3.2.3. Under-Optimized Smart Contract
When a user interacts with a smart contract deployed in Ethereum, a certain amount of
gas is charged. Gas can be exchanged with Ether, which is the cryptocurrency in Ethereum.

12

Table 6: Taxonomy of under-optimized patterns in smart contract

Number Under-optimized pattern Category
1 Dead code
Opaque predicate
Expensive operations
Constant outcome
Loop fusion Loop-related patterns
Repeated computations
Comparison with unilateral outcome

Useless-code related patterns

| O] Ot x| W Do

Unfortunately, some smart contracts’ development and deployment are not adequately op-
timized. Chen et al. [50] identify 7 gas-costly patterns and group them into 2 categories (as
shown in Table 6): useless-code related patterns, and loop-related patterns. They propose
a tool named GASPER, which can automatically discover 3 gas-costly patterns in smart
contracts: dead code, opaque predicate, and expensive operations in a loop. Leveraging
GASPER, they find that more than 80% smart contracts deployed in Ethereum (4,240 real
smart contracts) have at least one of these 3 patterns. The details are as follows:

(1). Dead code. It means that some operations in a smart contract will never be executed,
but they will still be deployed into the blockchain. Since in the smart contract deployment
process the consumption of gas is related to bytecode size, the dead code will cause additional
gas consumption.

(2). Opaque predicate. For some statements in a smart contract, their execution results
are always the same and will not affect other statements and the smart contract. The
presence of the opaque predicate causes the EVM to execute useless operations, thereby
consuming additional gas.

(3). Expensive operations in a loop. It refers to some expensive operations within a
loop, which can be moved outside the loop to save gas consumption.

3.2.4. Under-Priced Operations

As mentioned earlier, each operation is set to a specific gas value in Ethereum, which
can be queried in the yellow paper [51]. Ethereum sets the gas value based on the execution
time, bandwidth, memory occupancy and other parameters. In general, the gas value is
proportional to the computing resources consumed by the operation. However, it is difficult
to accurately measure the consumption of computing resources of an individual operation,
and therefore some gas values are not set properly. For example, some 10-heavy operations’
gas values are set too low, and hence these operations can be executed in quantity in one
transaction. In this way, an attacker can initiate a DoS (Denial of Service) attack on
Ethereum.

Table 7: Gas table modification in EIP150

Number Operation Old value | EIP150 value
1 EXTCODESIZE 20 700
2 EXTCODECOPY 20 700
3 BALANCE 20 400
4 SLOAD 50 200
5 CALL 40 700
6 SUICIDE (does not create account) 0 5,000
7 SUICIDE (creates an account) 0 25,000

13

Actually, attackers have exploited the under-priced operation EXTCODESIZE to attack
Ethereum [52]. When EXTCODESIZE is executed, it needs to read state information and then
the node will read hard disk. Since the gas value of EXTCODESIZE is only 20, the attacker
can call it more than 50,000 times in one transaction. This will cause the user to consume a
lot of computing resources, and block synchronization will be significantly slower compared
with the normal situation. As another example, some attackers exploited the under-priced
operation SUICIDE to launch DoS attacks [53]. They exploited SUICIDE to create about 19
million empty accounts, which need to be stored in the state tree. This attack caused a
waste of hard disk resources. At the same time, the node information synchronization and
transaction processing speed are significantly decreased.

In order to solve the security problem caused by under-priced operations, the gas values
of 7 10-heavy operations are modified in EIP (Ethereum Improvement Proposal) 150 [54], as
shown in Table 7. Note that EIP150 has already been implemented in the Ethereum public
chain by hard fork, and the new gas table parameters are used after No.2463000 block.

4. Attack Cases

In this section, we survey real attacks on blockchain systems, and analyze the vulnera-
bilities exploited in these attacks.

4.1. Selfish Mining Attack

The selfish mining attack is conducted by attackers (i.e., selfish miners) for the purpose of
obtaining undue rewards or wasting the computing power of honest miners [55]. The attacker
holds discovered blocks privately and then attempts to fork a private chain [56]. Afterwards,
selfish miners would mine on this private chain, and try to maintain a longer private branch
than the public branch because they privately hold more newly discovered blocks. In the
meanwhile, honest miners continue mining on the public chain. New blocks mined by the
attacker would be revealed when the public branch approaches the length of private branch,
such that the honest miners end up wasting computing power and gaining no reward, because
selfish miners publish their new blocks just before honest miners. As a result, the selfish
miners gain a competitive advantage, and honest miners would be incentivized to join the
branch maintained by selfish miners. Through a further consolidation of mining power into
the attacker’s favor, this attack undermines the decentralization nature of blockchain.

Ittay et al. [56] propose an attack strategy named SELFISH-MINE, which can force the
honest miners to perform wasted computations on the stale public branch. In the initial
circumstance of SELFISH-MINE, the length of the public chain and private chain are the
same. The SELFISH-MINE involves the following three scenarios:

(1). The public chain is longer than the private chain. Since the computing power of
selfish miners may be less than that of the honest miners, selfish miners will update the
private chain according to the public chain, and in this scenario, selfish miners cannot gain
any reward.

(2). Selfish miners and honest miners almost simultaneously find the first new block.
In this scenario, selfish miners will publish the newly discovered block, and there will be

14

two concurrently forks of the same length. Honest miners will mine in either of the two
branches, while selfish miners will continue to mine on the private chain. If selfish miners
firstly find the second new block, they will publish this block immediately. At this point,
selfish miners will gain two blocks’ rewards at the same time. Because the private chain is
longer than the public chain, the private chain will be the ultimate valid branch. If honest
miners firstly find the second new block and this block is written to the private chain, selfish
miners will gain the first new block’ rewards, and honest miners will gain the second new
block’ rewards. Otherwise, if this block is written to the public block, honest miners will
gain these two new blocks’ rewards, and selfish miners will not gain any reward.

(3). After selfish miners find the first new block, they also find the second new block. In
this scenario, selfish miners will hold these two new blocks privately, and they continue to
mine new blocks on the private chain. When the first new block is found by honest miners,
selfish miners will publish its own first new block. When honest miners find the second new
block, the selfish miners will immediately publish its own second new block. Then selfish
miners will follow this response in turn, until the length of the public chain is only 1 greater
than the private chain, after which the selfish miners will publish its last new block before
honest miners find this block. At this point, the private chain will be considered valid, and
consequently selfish miners will gain the rewards of all new blocks.

4.2. DAO Attack

Table 8: Some other attacks that exploit smart contracts’ vulnerabilities

Number Attack case Related vulnerabilities
. Out-of-gas send
1 King of the Ether throne Exception disorder
2 Multi-player games Field disclosure
3 Rubixi attack Immutable bug

Immutable bug
Stack overflow

4 GovernMental attack Unpredictable state
Timestamp dependence
5 Dynamic libraries attack Unpredictable state

The DAO is a smart contract deployed in Ethereum on 28th May of 2016, which im-
plements a crowd-funding platform. The DAO contract was attacked only after it has been
deployed for 20 days. Before the attack happened, DAQ has already raised 150 million USS,
which is the biggest crowdfund ever. The attacker stole about 60 million US$.

The attacker exploited the reentrancy vulnerability in this case. Firstly, the attacker
publishes a malicious smart contract, which includes a withdraw() function call to DAQO in
its callback function. The withdraw() will send Ether to the callee, which is also in the
form of call. Therefore, it will invoke the callback function of the malicious smart contract
again. In this way, the attacker is able to steal all the Ether from DAO. There are some
other cases that exploit smart contracts’ vulnerabilities (described in Section 3.2.2), which
are listed in Table 8 [20].

15

4.83. BGP Hijacking Attack

BGP (Border Gateway Protocol) is a de-facto routing protocol and regulates how IP
packets are forwarded to their destination. To intercept the network traffic of blockchain,
attackers either leverage or manipulate BGP routing. BGP hijacking typically requires the
control of network operators, which could potentially be exploited to delay network messages.
Maria et al. [57] comprehensively analyze the impact of routing attacks, including both node-
level and network-level attacks, on Bitcoin, and show that the number of the successfully
to-be-hijacked Internet prefixes depends on the distribution of mining power. Because of
the high centralization of some Bitcoin mining pools, if they are attacked by BGP hijacking,
it will have a significant effect. The attackers can effectively split the Bitcoin network, or
delay the speed of block propagation.

Attackers conduct BGP hijacking to intercept Bitcoin miners’ connections to a mining
pool server, as analyzed by Dell SecureWorks in 2014 [58]. By rerouting traffic to a mining
pool controlled by the attacker, it was possible to steal cryptocurrency from the victim.
This attack collected an estimated 83,000 US$ of cryptocurrency over a two month pe-
riod. Since the BGP security extensions are not widely deployed, network operators have
to rely on monitoring systems, which would report rogue announcements, such as BGP-
Mon [59]. However, even if an attack is detected, solving a hijacking still cost hours as it
is a human-driven process consisting of altering configuration or disconnecting the attacker.
For example, YouTube ever took about three hours to resolve a hijacking of its prefixes by
a Pakistani ISP (Internet Service Provider) [60].

4.4. Eclipse Attack

Table 9: Some other attacks that may be caused by the eclipse attack

Number Attack Harm
1 Engineering block races Wasting mining power on orphan blocks
2 Splitting mining power 51% vulnerability may be triggered
3 Selfish mining Attacker can gain more than normal mining rewards
4 0-confirmation double spend . .
5 N-confirmation double spend The vendor would not get rewards for its service

The eclipse attack allows an attacker to monopolize all of the victim’s incoming and
outgoing connections, which isolates the victim from the other peers in the network [61].
Then, the attacker can filter the victim’s view of the blockchain, or let the victim cost
unnecessary computing power on obsolete views of the blockchain. Furthermore, the attacker
is able to leverage the victim’s computing power to conduct its own malicious acts. Ethan
et al. [62] consider two types of eclipse attack on Bitcoin’s peer-to-peer network, namely
botnet attack and infrastructure attack. The botnet attack is launched by bots with diverse
IP address ranges. The infrastructure attack models the threat from an ISP, company
or nation-state that has contiguous IP addresses. The Bitcoin network might suffer from
disruption and a victim’s view of the blockchain will be filtered due to the eclipse attack.
Additionally, the eclipse attack is a useful basis for other attacks, as shown in Table 9 [62].

16

(VAN (. v

X Block Slow down
Privately hold TX| public chain's
growth

Build potential |
advantage

Figure 9: Overview of the liveness attack process

4.5. Liveness Attack

Aggelos et al. [63] propose the liveness attack, which is able to delay as much as possible
the confirmation time of a target transaction. They also present two instantiations of such
attack on Bitcoin and Ethereum. Liveness attack consists of three phases, namely attack
preparation phase, transaction denial phase, and blockchain retarder phase (shown in Fig.9):

(1). Attack preparation phase. Just like selfish mining attack, an attacker builds advan-
tage over honest miners in some way before the target transaction TX is broadcasted to the
public chain. The attacker builds the private chain, which is longer than the public chain.

(2). Transaction denial phase. The attacker privately holds the block that contains TX,
in order to prevent TX from being written into the public chain.

(3). Blockchain retarder phase. In the growth process of the public chain, TX will no
longer be able to be privately held in a certain time. In this case, the attacker will publish
the block that contains TX. In some blockchain systems, when the depth of the block that
contains TX is greater than a constant, TX will be regarded valid. Therefore, the attacker
will continue building private chain in order to build an advantage over the public chain.
After that, the attacker will publish her privately held blocks into public chain in proper
time to slow down the growth rate of public chain. The liveness attack will end when TX is
verified as valid in the public chain.

4.6. Balance Attack

Christopher et al. [64] propose the balance attack against PoW-based blockchain, which
allows a low-mining-power attacker to momently disrupt communications between subgroups
with similar mining power. They abstract blockchain into a DAG (Directed Acyclic Graph)
tree, in which DAG = < B, P >. B are the nodes indicating blocks’ information, and they
are connected through directed edges P. After introducing a delay between correct sub-
groups of equivalent mining power, the attacker issues transactions in one subgroup (called
“transaction subgroup”) and mines blocks in another subgroup (called “block subgroup”), to
guarantee that the tree of block subgroup outweighs the tree of transaction subgroup. Even
though the transactions are committed, the attacker is able to outweigh the tree containing
this transaction and rewrite blocks with high probability.

The balance attack inherently violates the persistence of the main branch prefix and
allows double spending. The attacker needs to identify the merchant-involved subgroup
and create transactions to purchase goods from those merchants. Thereafter, the attacker
issues transactions to this subgroup and propagates the mined blocks to the rest nodes of
the group. As long as the merchant ships goods, the attacker stops delaying messages.

17

With a high probability that the DAG tree seen by the merchant is outweighed by another
tree, the attacker could successfully reissue another transaction using exactly the same coins.
Balance attack proves that PoW-based blockchain is block oblivious. That is, when writing a
transaction into the main chain, there is a certain probability that the attacker can override
or delete the block containing this transaction. In the related experiment, the authors
configure an Ethereum private chain with equivalent parameters of R3 consortium [65], and
showed that they can successfully carry out the balance attack, which only needs to control
about 5% of total computing power.

5. Security Enhancements

In this section, we summarize security enhancements to blockchain systems, which can
be used in the development of blockchain systems.

5.1. SmartPool

Parity or geth Smartpool client Miner Smartpool contract
: TXs Tasks
S > b :
: : Completed shares :
R C—— :
: Share batches :
P = >
: Rewards :
P <= - =
Parity or geth Smartpool client Miner Smartpool contract

Figure 10: Overview of SMARTPOOL’s execution process
g b

As described in Section 3.1.1, there already has mining pool with more than 40% of total
computing power of blockchain. This poses a serious threat to the decentralization nature,
making blockchain vulnerable to several kinds of attacks. Loi et al. [26] propose a novel
mining pool system named SMARTPOOL, whose workflow is shown in Fig.10. SMARTPOOL
gets the transactions from Ethereum node clients (i.e., parity [66] or geth [67]), which contain
mining tasks information. Then, the miner conducts hashing computation based on the
tasks and returns the completed shares to the smartpool client. When the number of the
completed shares reaches to a certain amount, they will be committed to smartpool contract,
which is deployed in Ethereum. The smartpool contract will verify the shares and deliver
rewards to the client. Compared with the traditional P2P pool, SMARTPOOL system has
the following advantages:

(1). Decentralized. The core of the SMARTPOOL is implemented in the form of smart
contract, which is deployed in blockchain. Miners need first connect to Ethereum to mine
through the client. Mining pool can rely on Ethereum’s consensus mechanism to run. In this

18

way, it ensures decentralization nature of pool miners. The mining pool state is maintained
by Ethereum and no longer requires a pool operator.

(2). Efficiency. Miners can send the completed shares to the smartpool contract in
batches. Furthermore, miners only need to send part of shares to be verified, not all shares.
Hence, SMARTPOOL is more efficient than the P2P pool.

(3). Secure. SMARTPOOL leverages a novel data structure, which can prevent the
attacker from resubmitting shares in different batches. Furthermore, the verification method
of SMARTPOOL can guarantee that honest miners will gain expected rewards even there exist
malicious miners in the pool.

5.2. Quantitative Framework

e Consensus protocol parameters

uri rameter
o Network parameters * Security parameters

i
: Stale block rate
s D

|
Blockchain i
. Simulator ! «__model

v v

¢ Block propagation times

e Block sizes e Optimal adversarial strategy
o Network delays e Security provisions

e Throughput

Figure 11: Components of quantitative framework

There exist tradeoffs between blockchain’s performance and security. Arthur et al. [68]
propose a quantitative framework, which is leveraged to analyze PoW-based blockchain’s
execution performance and security provisions. As shown in Fig.11, the framework has two
components: blockchain stimulator and security model. The stimulator mimics blockchain’s
execution, whose inputs are parameters of consensus protocol and network. Through the
simulator’s analysis, it can gain performance statistics of the target blockchain, including
block propagation times, block sizes, network delays, stale block rate, throughput, etc. The
stale block refers to a block that is mined but not written to the public chain. The throughput
is the number of transactions that the blockchain can handle per second. Stale block rate
will be passed as a parameter to the security model component, which is based on MDP
(Markov Decision Processes) for defeating double spending and selfish mining attacks. The
framework eventually outputs optimal adversarial strategy against attacks, and facilitates
building security provisions for the blockchain.

5.3. OYENTE

Loi et al. [17] propose OYENTE to detect bugs in Ethereum smart contracts. OYENTE
leverages symbolic execution to analyze the bytecode of smart contracts and it follows the

19

execution model of EVM. Since Ethereum stores the bytecode of smart contracts in its
blockchain, OYENTE can be used to detect bugs in deployed contracts.

:> CFG BUILDER [:"> VISUALIZER

Contract's

bytecode
Z3 Solver
CORE
:> EXPLORER |=> ANALYSIS => | VALIDATOR
Ethereum

’
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

_ State
Figure 12: Overview of OYENTE’s architecture design and execution process

Fig.12 shows OYENTE’s architecture and execution process. It takes the smart con-
tract’s bytecode and Ethereum global state as inputs. Firstly, based on the bytecode, CFG
BUILDER will statically build CFG (Control Flow Graph) of smart contract. Then, accord-
ing to Ethereum state and CFG information, EXPLORER conducts simulated execution of
smart contract leveraging static symbolic execution. In this process, CFG will be further
enriched and improved because some jump targets are not constants; instead, they should
be computed during symbolic execution. The CORE ANALYSIS module uses the related anal-
ysis algorithms to detect four different vulnerabilities (described in Section 3.2.2). The
VALIDATOR module validates the detected vulnerabilities and vulnerable paths. Confirmed
vulnerability and CFG information will finally be output to the VISUALIZER module, which
can be employed by users to carry out debugging and program analysis. Currently, OYENTE
is open source for public use [69].

5.4. Hawk

As described in Section 3.1.5, privacy leakage is a serious threat to blockchain. In the
era of blockchain 2.0, not only transactions but also contract-related information are public,
such as contract’s bytecode, invoking parameters, etc.

Ahmed et al. [70] propose HAWK, a novel framework for developing privacy-preserving
smart contracts. Leveraging HAWK, developers can write private smart contracts, and it is
not necessary for them to use any code encryption or obfuscation techniques. Furthermore,
the financial transaction’s information will not be explicitly stored in blockchain. When
programmers develop HAWK contract, the contract can be divided into two parts: private
portion, and public portion. The private data and financial function related codes can be
written into the private portion, and codes that do not involve private information can be
written into the public portion. The HAWK contract is compiled into three pieces. (1). The
program that will be executed in all virtual machines of nodes, just like smart contracts in
Ethereum. (2). The program that will only be executed by the users of smart contracts. (3).
The program that will be executed by the manager, which is a special trustworthy party in
Hawk. The HAWK manager is executed in Intel SGX enclave (described in Section 3.1.3),
and it can see the privacy information of the contract but will not disclose it. HAWK can not

20

only protect privacy against the public, but also protect the privacy between different HAWK
contracts. If the manager aborts the protocol of HAWK, it will be automatically financially
penalized, and the users will gain compensation. Overall, HAWK can largely protect the
privacy of users when they are using blockchains.

5.5. Town Crier

i | TC smart contract »

I

|
|
|
|
|
|
|
|
| Users' smart
|
|
|
|
|
|
|
|

|
i i
i i |
! ! !
! ! !
: : enclave : HTTPS
contract i i i websites
| i |
| | |
I I i Data source
i i | SGX-enabled host | |
| | |
Ethereum : ! TC server !

Figure 13: Basic architecture of TOWN CRIER system

Smart contract often needs to interact with off-chain (i.e., external) data source. Zhang
et al. [49] propose TC (TowN CRIER), which is an authenticated data feed system for
this data interaction process. Since the smart contract deployed in blockchain cannot access
network directly, they cannot get data through HTTPS. T C exactly acts as a bridge between
HTTPS-enabled data source and smart contracts. The basic architecture of TC is shown
in Fig.13. TC contract is the front end of the TC system, which acts as API between
users’ contracts and TC server. The core program of TC is running in Intel SGX enclave
(described in Section 3.1.3). The main function of the TC server is to obtain the data
requests from users’ contracts, and obtain the data from target HTTPS-enabled websites.
Finally, the TC server will return a datagram to the users’ contracts in the form of digitally
signed blockchain messages.

TC can largely protect the security of the data requesting process. The core modules
of TC are respectively running on decentralized Ethereum, SGX-enabled enclave, and
HTTPS-enabled website. Furthermore, the enclave disables the function of network con-
nection to maximize its security. Relay module is designed as a network communication
hub for smart contracts, SGX enclave environment, and data source websites. Therefore, it
achieves isolation between network communication and the execution of T'C’s core program.
Even if the Relay module is attacked, or the network communication packets are tampered,
it will not change the normal function of TC. TC system provides a robust security model
for the smart contracts’ off-chain data interaction, and it has already been launched online
as a public service [71].

21

6. Future Directions

Based on the above systematic examination on the security of current blockchain sys-
tems, we list a few future directions to stir up research efforts into this area. First, nowadays
the most popular consensus mechanism used in blockchain is PoW. However, a major dis-
advantage of PoW is the waste of computing resources. To solve this problem, Ethereum is
trying to develop a hybrid consensus mechanism of PoW and PoS. Conducting researches
and developing more efficient consensus mechanisms will make a significant contribution
to the development of blockchain. Second, with the growth of the number of feature-rich
dAPPs, the privacy leakage risk of blockchain will be more serious. A dAPP itself, as well as
the process of communication between the dAPP and Internet, are both faced with privacy
leakage risks. There are some interesting techniques that can be applied in this problem:
code obfuscation, application hardening, execution trusted computing (e.g., Intel SGX), etc.
Third, the blockchain will produce a lot of data, including block information, transaction
data, contract bytecodes, etc. However, not all of the data stored in blockchain is valid.
The smart contract can erase its code by executing SUICIDE/SELFDESTRUCT. In addition,
there are a lot of smart contracts containing totally the same code in Ethereum, and many
smart contracts are never be executed after their deployments. An efficient data cleanup and
detection mechanism is desired to improve the execution efficiency of blockchain systems.

7. Conclusion

In this paper, we focus on the security issues of blockchain technology. By studying the
popular blockchain systems (e.g., Ethereum, Bitcoin, Monero, etc.), we conduct a systematic
examination on the security risks to blockchain. For each risk or vulnerability, we analyze its
causes and possible consequence. Furthermore, we survey the real attacks on the blockchain
systems, and analyze the vulnerabilities exploited in these attacks. Finally, we summarize
blockchain security enhancements and suggest a few future directions in this area.

Acknowledgements

This work is supported in part by the National Science Foundation of China (No.61471228,
No.61402080, No.61572115, No.61502086, No.61572109), the Key Project of Guangdong
Province Science & Technology Plan (No0.2015B020233018), and China Postdoctoral Sci-
ence Foundation founded project (No.2014M562307).

References

[1] J. DESJARDINS, It’s official: Bitcoin was the top performing currency of 2015 (2016).
URL http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-c
urrency-of-2015/

[2] J. Adinolfi, And 2016’s best-performing commodity is ... bitcoin? (2016).
URL http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin
-2016-12-22

22

http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-currency-of-2015/
http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-currency-of-2015/
http://money.visualcapitalist.com/its-official-bitcoin-was-the-top-performing-currency-of-2015/
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22
http://www.marketwatch.com/story/and-2016s-best-performing-commodity-is-bitcoin-2016-12-22

3]

[11]
[12]

[13]

blockchain.info, Confirmed transactions per day (2017).

URL https://blockchain.info/charts/n-transactions?timespan=all#

A. Ekblaw, A. Azaria, J. D. Halamka, A. Lippman, A case study for blockchain in healthcare: “medrec”
prototype for electronic health records and medical research data (2016).

URL https://www.media.mit.edu/publications/medrec-whitepaper/

A. Azaria, A. Ekblaw, T. Vieira, A. Lippman, Medrec: Using blockchain for medical data access and
permission management, in: International Conference on Open and Big Data, 2016.

X. Yue, H. Wang, D. Jin, M. Li, W. Jiang, Healthcare data gateways: Found healthcare intelligence
on blockchain with novel privacy risk control, in: Journal of medical systems, 2016.

S. Huckle, R. Bhattacharya, M. White, N. Beloff, Internet of things, blockchain and shared economy
applications, in: Procedia Computer Science, 2016.

P. Bylica, L. Glen, P. Janiuk, A. Skrzypczak, A. Zawlocki, A probabilistic nanopayment scheme for
golem, 2015.

URL http://golemproject.net/doc/GolemNanopayments.pdf

P. Hurich, The virtual is real: An argument for characterizing bitcoins as private property, in: Banking
& Finance Law Review, Carswell Publishing, 2016.

A. Dorri, S. S. Kanhere, R. Jurdak, P. Gauravaram, Blockchain for iot security and privacy: The case
study of a smart home, in: IEEE Percom workshop on security privacy and trust in the internet of
thing, 2017.

Y. Zhang, J. Wen, The iot electric business model: Using blockchain technology for the internet of
things, in: Peer-to-Peer Networking and Applications, 2016.

J. Sun, J. Yan, K. Z. Zhang, Blockchain-based sharing services: What blockchain technology can
contribute to smart cities, in: Financial Innovation, 2016.

X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran, S. Chen, The blockchain as a
software connector, in: The 13th Working IEEE/IFIP Conference on Software Architecture, 2016.

E. Nordstrom, Personal clouds: Concedo, Master’s thesis, Lulea University of Technology (2015).

J. S. Czepluch, N. Z. Lollike, S. O. Malone, The use of block chain technology in different application
domains, in: The IT University of Copenhagen, Copenhagen, 2015.

Ethereum, Etherscan: The ethereum block explorer (2017).

URL https://www.ethereum.org/

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in: The ACM
SIGSAC Conference on Computer and Communications Security, 2016.

V. Buterin, Critical update re: Dao vulnerability (2016).

URL https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/

J. Adelstein, Behind the biggest bitcoin heist in history: Inside the implosion of mt.gox (2016).

URL http://www.thedailybeast.com/articles/2016/05/19/behind-the-biggest-bitcoin-hei
st-in-history-inside-the-implosion-of-mt-gox.html

N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts (sok), in: Inter-
national Conference on Principles of Security and Trust, 2017.

Z. Zheng, S. Xie, H.-N. Dai, H. Wang, Blockchain challenges and opportunities: A survey, in: Interna-
tional Journal of Web and Grid Services, 2016.

M. Ghosh, M. Richardson, B. Ford, R. Jansen, A torpath to torcoin, proof-of-bandwidth altcoins for
compensating relays (2014).

URL https://www.smithandcrown.com/open-research/a-torpath-to-torcoin-proof-of-bandw
idth-altcoins-for-compensating-relays/

Intel, Proof of elapsed time (poet) (2017).

URL http://intelledger.github.io/

P. technologies, Proof of authority chains (2017).

URL https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains

E. community, Kovan - stable ethereum public testnet (2017).

URL https://github.com/kovan-testnet/proposal

23

https://blockchain.info/charts/n-transactions?timespan=all
https://blockchain.info/charts/n-transactions?timespan=all#
https://www.media.mit.edu/publications/medrec-whitepaper/
https://www.media.mit.edu/publications/medrec-whitepaper/
https://www.media.mit.edu/publications/medrec-whitepaper/
http://golemproject.net/doc/GolemNanopayments.pdf
http://golemproject.net/doc/GolemNanopayments.pdf
http://golemproject.net/doc/GolemNanopayments.pdf
https://www.ethereum.org/
https://www.ethereum.org/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
http://www.thedailybeast.com/articles/2016/05/19/behind-the-biggest-bitcoin-heist-in-history-inside-the-implosion-of-mt-gox.html
http://www.thedailybeast.com/articles/2016/05/19/behind-the-biggest-bitcoin-heist-in-history-inside-the-implosion-of-mt-gox.html
http://www.thedailybeast.com/articles/2016/05/19/behind-the-biggest-bitcoin-heist-in-history-inside-the-implosion-of-mt-gox.html
https://www.smithandcrown.com/open-research/a-torpath-to-torcoin-proof-of-bandwidth-altcoins-for-compensating-relays/
https://www.smithandcrown.com/open-research/a-torpath-to-torcoin-proof-of-bandwidth-altcoins-for-compensating-relays/
https://www.smithandcrown.com/open-research/a-torpath-to-torcoin-proof-of-bandwidth-altcoins-for-compensating-relays/
https://www.smithandcrown.com/open-research/a-torpath-to-torcoin-proof-of-bandwidth-altcoins-for-compensating-relays/
http://intelledger.github.io/
http://intelledger.github.io/
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://github.com/paritytech/parity/wiki/Proof-of-Authority-Chains
https://github.com/kovan-testnet/proposal
https://github.com/kovan-testnet/proposal

[26]

[27]
[28]

[29]

[41]
[42]

[43]

L. Luu, Y. Velner, J. Teutsch, P. Saxena, Smart pool: Practical decentralized pooled mining, in:
USENIX Security Symposium, 2017.

Karl, Security of blockchain technologies, Ph.D. thesis, Swiss Federal Institute of Technology (2016).
Karl, Ethereum eclipse attacks, 2016.

URL http://e-collection.library.ethz.ch/view/eth:49728

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, S. Capkun, On the security and
performance of proof of work blockchains, in: The ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

CoinMarketCap, Cryptocurrency market capitalizations (2017).

URL https://coinmarketcap.com/

M. Swan, Blockchain: Blueprint for a new economy, O’Reilly Media, 2015.

B. L. S.A., Bitcoin wallet (2017).

URL https://blockchain.info/wallet/#/

BlockGeeks, What is cryptocurrency: Everything you need to know (2016).

URL https://blockgeeks.com/guides/what-is-cryptocurrency/

M. Bartoletti, L. Pompianu, An empirical analysis of smart contracts: platforms, applications, and
design patterns, in: 1st Workshop on Trusted Smart Contracts, 2017.

BlockGeeks, Smart contracts: The blockchain technology that will replace lawyers (2016).

URL https://blockgeeks.com/guides/smart-contracts/

N. Hajdarbegovic, Bitcoin miners ditch ghash.io pool over fears of 51% attack (2014).

URL http://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack/

Dean, 51% attack (2015).

URL http://cryptorials.io/glossary/51-attack/

H. Mayer, Ecdsa security in bitcoin and ethereum: a research survey, 2016.

URL http://blog.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin
—and-Ethereum-a-Research-Survey.pdf

S. Alliance, Know your ransomware: Ctb-locker (2017).

URL https://www.secalliance.com/blog/ransomware-ctb-locker/

S. news, The current state of ransomware: Ctb-locker (2015).

URL https://news.sophos.com/en-us/2015/12/31/the-current-state-of-ransomware-ctb-1
ocker/

Wikipedia, Wannacry ransomware attack (2017).

URL https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

N. Christin, Traveling the silk road: A measurement analysis of a large anonymous online marketplace,
in: The 22nd international conference on World Wide Web, 2013.

H. Treasury, Uk national risk assessment of money laundering and terrorist financing (2015).

URL https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
468210/UK_NRA_October_2015_final_web.pdf

W. Cody, T. Amir, Darkwallet (2017).

URL https://darkwallet.is/

G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, S. Capkun, Misbehavior in bitcoin: A study of
double-spending and accountability, in: ACM Transactions on Information and System Security, 2015.
G. O. Karame, E. Androulaki, S. Capkun, Double-spending fast payments in bitcoin, in: The ACM
conference on Computer and Communications Security, 2012.

A. Miller, M. Méser, K. Lee, A. Narayanan, An empirical analysis of linkability in the monero
blockchain, in: arXiv preprint:1704.04299, 2017.

A. Juels, A. Kosba, E. Shi, The ring of gyges: Investigating the future of criminal smart contracts, in:
The ACM SIGSAC Conference on Computer and Communications Security, 2016.

F. Zhang, E. Cecchetti, K. Croman, A. Juels, E. Shi, Town crier: An authenticated data feed for
smart contracts, in: Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, 2016.

24

http://e-collection.library.ethz.ch/view/eth:49728
http://e-collection.library.ethz.ch/view/eth:49728
https://coinmarketcap.com/
https://coinmarketcap.com/
https://blockchain.info/wallet/#/
https://blockchain.info/wallet/#/
https://blockgeeks.com/guides/what-is-cryptocurrency/
https://blockgeeks.com/guides/what-is-cryptocurrency/
https://blockgeeks.com/guides/smart-contracts/
https://blockgeeks.com/guides/smart-contracts/
http://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack/
http://www.coindesk.com/bitcoin-miners-ditch-ghash-io-pool-51-attack/
http://cryptorials.io/glossary/51-attack/
http://cryptorials.io/glossary/51-attack/
http://blog.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
http://blog.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
http://blog.coinfabrik.com/wp-content/uploads/2016/06/ECDSA-Security-in-Bitcoin-and-Ethereum-a-Research-Survey.pdf
https://www.secalliance.com/blog/ransomware-ctb-locker/
https://www.secalliance.com/blog/ransomware-ctb-locker/
https://news.sophos.com/en-us/2015/12/31/the-current-state-of-ransomware-ctb-locker/
https://news.sophos.com/en-us/2015/12/31/the-current-state-of-ransomware-ctb-locker/
https://news.sophos.com/en-us/2015/12/31/the-current-state-of-ransomware-ctb-locker/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_NRA_October_2015_final_web.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_NRA_October_2015_final_web.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/468210/UK_NRA_October_2015_final_web.pdf
https://darkwallet.is/
https://darkwallet.is/

[50]
[51]

[52]

[53]

[69]
[70]

[71]

T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour your money, in: The IEEE
24th International Conference on Software Analysis, Evolution and Reengineering, 2017.

E. community, The “yellow paper”: Ethereum’s formal specification (2017).

URL https://github.com/ethereum/yellowpaper

Gautham, Ethereum network comes across yet another dos attack (2016).

URL http://wuw.newsbtc.com/2016/09/23/ethereum-dao-attack-attack-platforms-credibili
ty/

B. Rivlin, Vitalik buterin on empty accounts and the ethereum state (2016).

URL https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-sta
te

E. community, Long-term gas cost changes for io-heavy operations to mitigate transaction spam attacks
(2016).

URL https://github.com/ethereum/EIPs/issues/150

S. Solat, M. Potop-Butucaru, Zeroblock: Preventing selfish mining in bitcoin, Ph.D. thesis, University
of Paris (2016).

I. Eyal, E. G. Sirer, Majority is not enough: Bitcoin mining is vulnerable, in: Financial Cryptography
and Data Security - 18th International Conference, Lecture Notes in Computer Science, 2014.

M. Apostolaki, A. Zohar, L. Vanbever, Hijacking bitcoin: Routing attacks on cryptocurrencies, in:
IEEE Symposium on Security and Privacy, 2017.

D. SecureWorks, BGP hijacking for cryptocurrency profit (2014).

URL https://wuw.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit

H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang, D. Massey, BGPmon: A real-time, scalable,
extensible monitoring system, in: Cybersecurity Applications Technology Conference for Homeland
Security, 2009.

D. Research, Pakistan hijacks youtube (2008).

URL http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/

A. Singh, T. Ngan, P. Druschel, D. S. Wallach, Eclipse attacks on overlay networks: Threats and
defenses, in: The 25th IEEE International Conference on Computer Communications, Joint Conference
of the IEEE Computer and Communications Societies, 2006.

E. Heilman, A. Kendler, A. Zohar, S. Goldberg, Eclipse attacks on bitcoin’s peer-to-peer network, in:
The 24th USENIX Security Symposium, 2015.

A. Kiayias, G. Panagiotakos, On trees, chains and fast transactions in the blockchain, 2016.

URL https://eprint.iacr.org/2016/545.pdf

C. Natoli, V. Gramoli, The balance attack against proof-of-work blockchains: The r3 testbed as an
example, in: arXiv preprint:1612.09426, 2016.

R. consortium, R3 (2017).

URL https://wuw.r3.com

P. technologies, Parity (2017).

URL https://parity.io

E. community, Official go implementation of the ethereum protocol (2017).

URL https://github.com/ethereum/go-ethereum

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, S. Capkun, On the security and
performance of proof of work blockchains, in: The ACM SIGSAC Conference on Computer and Com-
munications Security, 2016.

L. Luu, D. Chu, H. Olickel, P. Saxena, A. Hobor, Oyente: An analysis tool for smart contracts (2016).
URL https://www.comp.nus.edu.sg/~loiluu/oyente.html

A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts, in: IEEE Symposium on Security and Privacy, 2016.

F. Zhang, E. Cecchetti, K. Croman, A. Juels, E. Shi, Town crier (2017).

URL http://www.town-crier.org/

25

https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper
http://www.newsbtc.com/2016/09/23/ethereum-dao-attack-attack-platforms-credibility/
http://www.newsbtc.com/2016/09/23/ethereum-dao-attack-attack-platforms-credibility/
http://www.newsbtc.com/2016/09/23/ethereum-dao-attack-attack-platforms-credibility/
https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-state
https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-state
https://www.ethnews.com/vitalik-buterin-on-empty-accounts-and-the-ethereum-state
https://github.com/ethereum/EIPs/issues/150
https://github.com/ethereum/EIPs/issues/150
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
https://www.secureworks.com/research/bgp-hijacking-for-cryptocurrency-profit
http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/
http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/
https://eprint.iacr.org/2016/545.pdf
https://eprint.iacr.org/2016/545.pdf
https://www.r3.com
https://www.r3.com
https://parity.io
https://parity.io
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://www.comp.nus.edu.sg/~loiluu/oyente.html
https://www.comp.nus.edu.sg/~loiluu/oyente.html
http://www.town-crier.org/
http://www.town-crier.org/

	1 Introduction
	2 Overview of Blockchain Technologies
	2.1 Consensus Mechanism
	2.2 Block Propagation and Synchronization
	2.3 Technology Development

	3 Risks to Blockchain
	3.1 Common Risks to Blockchain 1.0 and 2.0
	3.1.1 51% Vulnerability
	3.1.2 Private Key Security
	3.1.3 Criminal Activity
	3.1.4 Double Spending
	3.1.5 Transaction Privacy Leakage

	3.2 Specific Risks to Blockchain 2.0
	3.2.1 Criminal Smart Contracts
	3.2.2 Vulnerabilities in Smart Contract
	3.2.3 Under-Optimized Smart Contract
	3.2.4 Under-Priced Operations

	4 Attack Cases
	4.1 Selfish Mining Attack
	4.2 DAO Attack
	4.3 BGP Hijacking Attack
	4.4 Eclipse Attack
	4.5 Liveness Attack
	4.6 Balance Attack

	5 Security Enhancements
	5.1 SmartPool
	5.2 Quantitative Framework
	5.3 Oyente
	5.4 Hawk
	5.5 Town Crier

	6 Future Directions
	7 Conclusion

